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We present a new scale decomposition method to investigate turbulence in wavenumber-frequency
space. Using 3D magnetohydrodynamic turbulence simulations, we show that magnetic fluctuations
with time scales longer than the nonlinear time exhibit an inverse cascade toward even smaller
frequencies. Low frequency magnetic fluctuations support turbulence, acting as an energy reservoir
that is converted into plasma kinetic energy, the latter cascading toward large wavenumbers and
frequencies, where it is dissipated. Our results shed new light on the spatio-temporal properties of
turbulence, potentially explaining the origin and role of low frequency turbulent fluctuations in the
solar wind.

Turbulence is ubiquitous in space and astrophysical
plasmas, including the solar wind (SW) [1], the inter-
stellar medium [2], accretion disks of compact objects [3],
and galaxy clusters [4]. The signature of turbulence is the
generation of fluctuations with broadband wavenumber
and frequency spectra. Turbulent plasmas are typically
subject to strong background magnetic fields, inducing
a wavenumber anisotropy of the kind k⊥ > k∥ [5–11],
with k⊥ and k∥ representing wavenumbers perpendicu-
lar and parallel to the magnetic field. Numerical [12–16]
and observational [17, 18] SW studies have revealed that
plasma turbulence has nontrivial spatio-temporal prop-
erties, with a tendency for magnetic field, velocity and
density fluctuations to be concentrated at low frequencies
ω and small k∥. Low (k∥, ω) modes are often interpreted
as quasi-2D structures, like flux ropes and vortices [19–
24], since their energy distribution in (k⊥, k∥, ω) space
does not follow the dispersion relation of waves.

The origin of low (k∥, ω) turbulent fluctuations has
been debated for decades and is still not well under-
stood. Several theoretical explanations for the formation
of (ω ∼ 0, k∥ ∼ 0) modes have been proposed, includ-
ing quasi-2D models of nearly incompressible turbulence
[25–27], turbulence driven by counterpropagating Alfvén
waves [28, 29], nonlinear frequency broadening of magne-
tohydrodynamic (MHD) modes [30, 31], and inverse tur-
bulent cascades driven by the conservation of MHD and
reduced-MHD invariants [32, 33]. In addition to under-
standing their origin, the presence of low (k∥, ω) modes
also raises the question of whether such fluctuations play
a role in driving the turbulent cascade, or if they are
dynamically irrelevant once generated. Despite the long-
standing efforts in addressing these questions, a unifying
description for the origin of low (k∥, ω) fluctuations and
their role in turbulence is still missing.

Understanding the spatio-temporal properties of tur-
bulence has fundamental implications for several space
and astrophysical problems. These include the solar
corona heating [34, 35], the SW acceleration and expan-
sion [36, 37], the emergence of “1/f” frequency spectra in

the SW [38, 39], the acceleration and transport of cosmic
rays [40–42], angular momentum transport in accretion
disks [43, 44], the dynamics of molecular clouds and star
formation [45, 46], and the turbulent dynamo [47–49].
In this Letter, we present a new framework to study

how turbulence reorganizes energy among fluctuations
with different wavenumbers and frequencies. We use this
method to investigate the origin of low frequency SW tur-
bulent fluctuations, and their role in the turbulent cas-
cade. Our approach employs the coarse graining (CG)
technique, frequently used to study hydrodynamic [50–
52], MHD [53–55], and plasma turbulence [56–59]. The
CG method consists in low-pass filtering the equations of
motion of the system, cutting-off small scales. The global
energy balance obtained from filtered equations gives a
set of quantities describing large scale energy transfers,
plus some cascade terms, representing energy exchanges
between large and small scales. We apply this method to
MHD equations

∂tρ+∇·
(
ρu

)
= 0,

∂t
(
ρu

)
+∇·

(
ρuu

)
= −∇P + J×B+∇·Π+ Fu,

∂tB =∇×
(
u×B−η J

)
+ F

B
,

(1)

where ρ, u and P are the plasma density, velocity and
pressure. B is the magnetic field, J = ∇×B, η is the
magnetic diffusivity. Π=ρ ν

[
∇u+∇uT−

(
2/3

)(
∇·u

)
I
]
is

the viscous stress tensor, where ν is the viscosity, I is the
identity matrix, and T indicates the transpose operation.
Fu and F

B
are large scale turbulent forcing terms.

The CG method typically involves only spatial scales,
but we extend the technique by introducing the spatio-
temporal low-pass filter

q
(
x, t, k, τ

)
=

∑
k′<k

∫
dt′ Q

(
k′, t′

)
eik

′·x Gτ

(
t−t′

)
, (2)

where q(x, t) is a generic quantity with spatial Fourier
transform Q(k, t), and Gτ is a boxcar function with
width τ . q contains wavenumbers < k and time scales >
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τ . The corresponding density-weighted filter is q̂=ρ q/ρ
[60]. By applying this filter to Eqs. (1), and calculating
the global energy balance, we obtain:

∂t

〈
1

2
ρ û2

〉
= −W

P
−Πu +We.m. −Du + Iu,

∂t

〈
1

2
B

2
〉

= −Π
B
−We.m. −D

B
+ I

B
,

(3)

where ⟨·⟩ indicates the spatial average over the system
size, and we assumed no transport across the system
boundaries, causing all terms in the form of a divergence
to vanish when averaged (as in periodic systems). A de-
tailed derivation of Eqs. (3) is provided in Supplemen-
tal Material. The energy transfer channels (ETCs) in
Eqs. (3) are

I
B
=
〈
F

B
·B

〉
, Iu=

〈
Fu · û

〉
,

We.m.=
〈
−
(
û×B

)
· J

〉
, Π

B
=
〈
τ

E
· J

〉
,

Πu=ΠS
u +ΠL

u =
〈
−ρ τu :∇û

〉
+
〈
−τ

B
· û

〉
,

W
P
=
〈
−P ∇·û

〉
, D

B
=
〈
η J

2〉
, Du=

〈
Π :∇û

〉
,

(4)

with I
B

and Iu representing the magnetic and kinetic
energy injection rates, We.m. and W

P
are the electro-

magnetic (e.m.) and pressure works, D
B
and Du are the

magnetic and kinetic energy dissipation rates, all repre-
senting energy exchanges at scales < k and > τ . Π

B
and

Πu are the magnetic and kinetic energy cascade rates,
quantifying energy transfers from scales < k and > τ ,
to scales > k and < τ . τu = (ûu − ûû) is the sub-
scale stress tensor [61], while τ

E
= −(u×B − û × B)

and τ
B
=(J×B − J ×B) are the subscale electric field

and Lorentz force. Subscale terms couple small scales to
large scales. Hence, Π

B
represents the interaction be-

tween small scale electric fields τ
E

and large scale cur-
rents J. Πu includes two contributions: ΠS

u quantifies
the interaction between small scale stresses τu and the
large scale strain tensor ∇û; ΠL

u couples the small scale
Lorentz force τ

B
to large scale velocities û.

We apply our CG method to a 3D simulation of MHD
turbulence, realized with Athena++ [62], implementing
Eqs. (1). We consider a uniform periodic grid with
256×5122 points, and size Lz=3Ly=3Lx=6π (in arbi-
trary units L0). The plasma has zero initial velocity, ho-
mogeneous density ρ0 and guide field B0=B0ẑ. Pressure
is isothermal, with plasma beta β=2 c2

S
/c2

A
=0.5, where

c
S
and c

A
= B0/

√
ρ0 are the sound and Alfvén speeds.

Turbulence is driven by Fu and F
B
, consisting of sinu-

soidal perturbations with wavenumbers 1 ⩽ k∥/k∥,0 ⩽ 3
and 1 ⩽ k⊥/k⊥,0 ⩽ 4 (where k∥,0 = 2π/Lz and k⊥,0 =
2π/Lx). Each perturbation evolves in time following the
Langevin antenna (LA) scheme [63], with driving fre-
quency ω0=0.8 τ−1

A
and decorrelation rate γ0=−0.7 τ−1

A

FIG. 1. Temporal evolution of magnetic and kinetic energy
variations ∆EB and ∆Eu. The green shaded area indicates
the time interval used for the space-time analysis.

(where τ
A
=L0/cA). Fu and F

B
are solenoidal and per-

pendicular to B0, driving incompressible Alfvénic per-
turbations with cross helicity σ

C
≃ 0. Fu and F

B
are

set to induce magnetic and velocity fluctuations with
root mean square (rms) amplitudes δBrms/B0 ≃ 0.18
and δurms/cA ≃ 0.17. Our setup produces turbulence
with typical near-Earth SW parameters [64]. We set
η=ν=2.5 · 10−4 (in L2

0/τA units).

Figure 1 shows the temporal evolution of magnetic
and kinetic energy variations, ∆E

B
=E

B
(t)−E

B
(0) and

∆Eu =Eu(t)−Eu(0) (in ρ0 c
2
A
L3
0 units). Both energies

quickly grow and saturate, after 20 τ
A
. We consider in-

terval T = [20 τ
A
, 120 τ

A
] for our analysis (green shaded

area), when turbulence is fully developed and nearly sta-
tionary. Figures 2(a)-(b) show (k∥, ω) and (k⊥, ω) pro-
jections of the magnetic field space-time Fourier spec-
trum P

B
, calculated over interval T , with simulation data

sampled every ∆t= 0.1 τ
A
. (k∥, ω) and (k⊥, ω) projec-

tions are calculated as P
B
(k∥, ω) =

∫
P

B
(k⊥, k∥, ω) dk⊥

and P
B
(k⊥, ω) =

∫
P

B
(k⊥, k∥, ω) dk∥. The correspond-

ing projections of the velocity spectrum Pu are shown
in Fig. 2(c)-(d). We see that energy is distributed into
concentric shells in (k∥, ω) space, quickly falling off to-
ward large k∥ and ω. (k⊥, ω) projections also show that
most energy is concentrated around small ω, but with a
wider distribution in k⊥, up to relatively high wavenum-
bers. Despite our turbulent driver being incompressible,
density fluctuations still develop, reaching an rms ampli-
tude of δρrms/ρ0 ≃ 0.08 at fully developed turbulence.
Figures 2(e)-(f) show (k∥, ω) and (k⊥, ω) projections of
the density spectrum Pρ. Similarly to magnetic and ve-
locity fluctuations, density fluctuations are concentrated
around low ω, exhibiting a strong k⊥ > k∥ anisotropy.
Overall, (k, ω) spectra of magnetic, velocity and den-
sity fluctuations do not follow the dispersion relations
(dashed lines) of Alfvén waves (AW), slow modes (SM),
and fast modes (FM), with most energy stored in low ω,
low k∥ fluctuations, consistently with previous numerical
works [16] and SW observations [18].
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FIG. 2. (k∥, ω) and (k⊥, ω) projections of magnetic field, velocity and density spectra PB (a)-(b), Pu (c)-(d), and Pρ (e)-(f).
Dashed lines indicate the the dispersion relations of Aflvén wave (AW) and slow modes (SM) for parallel propagation (k⊥=0),
and of fast modes (FM) for perpendicular propagation (k∥=0).

We investigate the origin of such spectral features using
our spatio-temporal CG method, tracking energy trans-
fers from injection to dissipation in (k⊥, k∥, τ) space
(with τ ≃ 2π/ω). The goal is understanding how low ω
(large τ) fluctuations develop, and their role in the tur-
bulent cascade. We analyze two projections of ETCs in
Eqs. 4: (k∥, τ) projections are obtained by filtering in k∥
and τ , retaining all k⊥; (k⊥, τ) projections are calculated
by filtering in k⊥ and τ , keeping all k∥. For the temporal
filtering, we center the boxcar kernel Gτ at t=70 τ

A
(ver-

tical dashed line in Fig. 1), varying its width τ from 0.2 τ
A

to 100 τ
A
, covering the whole interval T . ETCs are shown

in Fig. 3, with black lines indicating their isocontours. As
I
B
and Iu exhibit analogous (k⊥, k∥, τ) dependence and

comparable amplitude, we analyze the total energy injec-
tion rate Itot=I

B
+Iu. For the same reason, we show the

total dissipation rate Dtot=D
B
+Du. IB

, Iu, DB
and Du

are shown separately in Supplemental Material. For each
ECTs, both (k∥, τ) and (k⊥, τ) projections exhibit the
same qualitative features, but they are not isotropic in
(k∥, k⊥) space. The ETCs anisotropy causes the k⊥>k∥
anisotropy observed in spectra [65, 66]. As a reference,
we show the parallel and perpendicular integral scales
kint∥ and kint⊥ (vertical green dashed lines) [67]

(kint⊥ , kint∥ ) =

∫ ∫ ∫
(k⊥, k∥)Pu dk⊥dk∥dω∫ ∫ ∫

Pu dk⊥dk∥dω
, (5)

representing the scale of energy containing fluctuations,
and the nonlinear time (horizontal green dashed lines)
τnl = 2π/(kint⊥ δurms). Starting from Itot, Fig. 3(a)-(b),
we see it is positive and increases with wavenumber, up
to k∥≃ 1.3 and k⊥≃ 6, after which it saturates, indicat-
ing no contribution from larger wavenumbers. Regarding
its τ dependence, we note that Itot is not peaked at the
driving time 2π/ω0 ≃ 7.8 τ

A
, but exhibits a broad fre-

quency response, growing from τ ≃ 15 to τ ≃ 1.5, while
being almost constant elsewhere. This broadening is de-
termined by the decorrelation rate γ0 of the LA driver,
typically chosen to be slightly smaller than ω0. Different
drivers may alter the (k, ω) distribution of injected per-
turbations, but we choose the LA approach since it has

been proven to successfully reproduce key features of SW
turbulence [63, 68].
Energy injected by Itot is transferred to other scales

by the cascade terms Π
B

and Πu. Starting from Π
B
,

Fig. 3(c)-(d), we find it is negative for τ ≳ τnl and
wavenumbers larger than kint∥ and kint⊥ , while being pos-
itive for τ < τnl, where it peaks around integral scales.
This indicates a frequency space bifurcation in the mag-
netic energy cascade, with large τ (low ω) fluctuations
exhibiting an inverse cascade1 toward even lower frequen-
cies and smaller wavenumbers in (k, τ) space, while small
τ (high ω) magnetic modes undergo a direct cascade,
with the cascade rate being stronger around kint∥ and kint⊥ ,
in the inertial range. Hence, part of the injected magnetic
energy is transferred to low (k, ω) fluctuations, while an-
other fraction is transferred to high (k, ω) modes. We
first follow the path taken by low ω magnetic fluctua-
tions. Magnetic energy piling up at large τ because of
the inverse cascade can be converted into kinetic energy
by We.m.. Figures 3(e)-(f) show that We.m. is positive
in the same range where Π

B
is negative, for τ ≳ τnl and

wavenumbers larger than kint∥ and kint⊥ , and their abso-
lute magnitudes are similar, indicating that low ω mag-
netic energy is converted into low ω kinetic energy. Such
balance between the inverse magnetic energy cascade and
a low ω energy sink, We.m. in this case, is expected and
has to occur in order for turbulence to reach a quasi-
stationary state. The combination of the inverse mag-
netic energy cascade and the magnetic-to-kinetic energy
conversion at low ω, implies an accumulation of mag-
netic and kinetic energy at small frequencies, explaining
the origin of low ω fluctuations in energy spectra. Unlike
Π

B
, the kinetic energy cascade rate Πu, Fig. 3(g)-(h),

is positive at all (k, τ) scales, peaking around integral
scales and at τ slightly smaller than τnl, indicating a di-
rect kinetic energy cascade, regardless of the frequency.

1 By “inverse cascade” we mean energy transfer from high to low
frequencies. Other aspects typically associated with the tradi-
tional concept of “cascade”, such as its locality, are not addressed
here and will be investigated in future studies.
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FIG. 3. (k∥, τ) and (k⊥, τ) projections of IB +Iu (a)-(b), ΠB (c)-(d), We.m. (e)-(f), Πu (g)-(h), ΠS
u (i)-(j), ΠL

u (k)-(l), DB +Du

(m)-(n), and WP (o)-(p), with vertical green dashed lines indicating parallel and perpendicular integral scales kint
∥ and kint

⊥ ,
while horizontal green dashed lines represent the nonlinear time τnl. Schematic representation of the energy cascade in frequency
space (q).

Combining Π
B
, We.m. and Πu, we thus find that low ω

magnetic fluctuations contribute to driving turbulence,
providing magnetic energy that is first converted into
low ω kinetic energy by We.m., and finally transferred to
higher (k, ω) fluctuations by Πu. Since We.m. is negative
for large k and small τ , Fig. 3(e)-(f), part of the small
scale kinetic energy resulting from the direct cascade is
converted to small scale magnetic energy.

Additional insights on the turbulent cascade are ob-
tained decomposing Πu into ΠS

u and ΠL
u , in Fig. 3(i)-(l).

We find that ΠS
u is negative over most of (k⊥, k∥, τ) space

(except at small scales, where it is weakly positive), in-
dicating an inverse cascade. This is strikingly different
from hydrodynamic turbulence, where ΠS

u is typically
positive, being the only cascade term [69]. Conversely,
ΠL

u is positive at all scales, and stronger in amplitude
than ΠS

u , thus producing a net direct kinetic energy cas-
cade when combined with ΠS

u . Hence, the direct kinetic
energy cascade in MHD turbulence is mainly driven by
e.m. interactions between the small scale Lorentz force
and large scale velocities, quantified by ΠL

u , while the
hydrodynamic cascade term ΠS

u opposes the direct ΠL
u

cascade.

Magnetic and kinetic energy cascading to small scales

is eventually dissipated. Figures 3(m)-(n) show the dis-
sipation rate Dtot to be weak at large scales, growing to
large positive values toward high k and small τ , indicat-
ing that dissipation mainly affects high frequencies and
wavenumbers. Consequently, low ω fluctuations result-
ing from the inverse cascade are not dissipated. Turbu-
lent SW dissipation is mainly caused by kinetic processes
[70], rather than by collisional resistive and viscous effects
as in our simulation. However, kinetic scale dissipation
is typically mediated by wave-particle interactions [71]
and fast intermittent events, like magnetic reconnection
[72, 73], whose time scales are comparable to particle gy-
roperiods. Hence, we expect kinetic effects not to affect
the dynamics of low ω fluctuations, whose time scales are
much larger than particle gyroperiods [18].

Another channel for kinetic energy dissipation is W
P
,

quantifying compressible effects. Figures 3(o)-(p) show
W

P
to be negligibly small for τ > τnl, meaning that low

ω fluctuations are essentially incompressible, while for
τ ≲ τnl it is negative around integral scales (dilatation),
and positive (compression) elsewhere. However, W

P
is

about one order of magnitude smaller than other ETCs,
providing negligible contributions to the global energy
balance, consistently with previous studies [55].
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The interplay among all ECTs in frequency space is
schematically summarized in Fig. 3(q), highlighting the
origin and role of low ω turbulent fluctuations. Energy
injection is represented by the gray shaded area around
the nonlinear frequency ωnl≃2π/τnl. Part of the injected
magnetic energy exhibits an inverse cascade, driven by
Π

B
, causing a pileup of low ω magnetic energy E<

B
, and

thus of low ω magnetic fluctuations. Low ω magnetic
energy is transferred to low ω kinetic energy E<

u by the
e.m. work We.m., producing low ω velocity fluctuations.
Low ω kinetic energy undergoes a direct cascade, driven
by Πu, toward high ω kinetic energy E>

u . Energy flows
into high ω magnetic energy E>

B
through two paths: a

direct cascade from injection to E>
B
, driven by Π

B
, and

the kinetic-to-magnetic energy transfer driven by We.m.

at high ω, converting E>
u into E>

B
. Finally, E>

B
and E>

u

are dissipated by D
B
and Du, respectively. E<

B
and E<

u

are not affected by resistive and viscous dissipation, mak-
ing low ω magnetic field and velocity fluctuations a stable
reservoir of energy that contributes to driving the turbu-
lent cascade. The fact that dissipation is efficient at high
ω, while not affecting low ω, explains the energy distri-
bution observed in magnetic field and velocity spectra,
where most energy lies in low ω modes, while high ω
fluctuations are dissipated, exhibiting a negligible energy
content.

The main new mechanism unveiled by our spatio-
temporal CG analysis is the frequency space bifurcation
in the magnetic energy cascade, with magnetic fluctua-
tions exhibiting an inverse cascade at frequencies ω<ωnl,
and a direct cascade for ω > ωnl. Our results poten-
tially explain the origin of low frequency turbulent fluc-
tuations observed in the SW, showing that low ω modes
are not just a passive product of turbulence, but they
also support the energy cascade. Additional elements
may contribute to low frequency SW fluctuations, as the
presence of long-lived structures originating in the so-
lar chromosphere or corona, later advected into the SW.
Nevertheless, our analysis shows that turbulence alone is
capable of producing low frequency fluctuations locally,
suggesting they may develop in-situ in the SW. Here by
“low frequency fluctuations” we mean the low ω range in
(k, ω) spectra in Fig. 2, also measured in the SW [17, 18].
However, low frequency SW fluctuations cover a wide
frequency range, often exhibiting 1/f spectra extending
about two decades below the turbulence correlation fre-
quency. Such a ω range is only partially accessible in
our simulation, as the largest time scales we resolve are
about one order of magnitude larger than τnl.

Our findings have potential implications for the devel-
opment of new models of plasma turbulence, including
frequency information. The inverse magnetic energy cas-
cade we observe is fundamentally different from the tur-
bulent dynamo. In dynamo configurations, small scale
low amplitude magnetic perturbations are amplified and
grow in size due to field line stretching induced by large

scale hydrodynamic flows, with a wide scale separation
between velocity and magnetic fluctuations [47]. This is
not the case in our simulation, since both magnetic and
velocity perturbations are injected in the same range of
scales, with similar amplitudes, mimicking SW turbu-
lence driven by large scale Alfvénic fluctuations. In this
scenario, we find that magnetic fluctuations with differ-
ent ω contribute differently to turbulence, with a fraction
of them exhibiting an inverse cascade, while others un-
dergo a direct cascade.

The turbulent cascade may be influenced by several
parameters, including β and σ

C
[74–76]. To test the

generality of our findings, we applied our CG analysis
to other two MHD simulations of turbulence, a (β =
18, σ

C
≃0) run, representing SW turbulence in the outer

heliosphere [77], and a (β = 0.5, σ
C
≃ 0.73) run, repro-

ducing near-Sun SW turbulence, where σ
C
reaches large

values (imbalanced turbulence), as measured by Parker
Solar Probe [78]. In both runs, the energy cascade ex-
hibits the same spatio-temporal behavior observed in our
main (β=0.5, σ

C
≃0) run. Specifically, an inverse mag-

netic energy cascade occurs at τ ≳ τnl, with magnetic
energy being converted into kinetic energy by We.m. at
low ω, complemented by a direct kinetic energy cascade
from low to high frequencies (see Supplemental Mate-
rial). Another parameter that may influence the cascade
dynamics is the magnetic helicity σ

B
, a conserved MHD

quantity undergoing an inverse cascade in wavenumber
space [79, 80]. The random phase nature of our magnetic
driver F

B
implies the injection of magnetic fluctuations

with σ
B
≃ 0, so we argue that the inverse magnetic en-

ergy cascade we observe is not related to the inverse σ
B

cascade.

We have shown that low ω magnetic and velocity
modes are also associated with density fluctuations, while
being nearly incompressible. The question remains to un-
derstand the identity of such low ω incompressible struc-
tures. A possible interpretation is that low ω fluctuations
correspond to long-lived flux ropes, typically observed in
the SW, where magnetic pressure is balanced by den-
sity (and thus pressure) variations [81–83]. Investigating
the properties of low ω turbulent fluctuations in terms
of their real space structure will be the subject of future
studies.
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Supplemental Material

Coarse grained magnetohydrodynamic equations

This section provides a detailed derivation of the
spatio-temporal coarse grained magnetohydrodynamic
(MHD) equations employed in the Letter.

We introduce a space-time low-pass filter defined as

q
(
x, t, k, τ

)
=

∑
k′<k

∫
dt′ Q

(
k′, t′

)
eik

′·x Gτ

(
t−t′

)
, (6)

where q(x, t) is a generic quantity with spatial Fourier
transform Q(k, t), and Gτ is a boxcar function with
width τ . The filtered quantity q contains fluctuations
with wavenumbers < k and time scales > τ . The corre-
sponding density-weighted filter is q̂=ρ q/ρ. We consider
the MHD equations

∂tρ+∇·
(
ρu

)
= 0,

∂t
(
ρu

)
+∇·

(
ρuu

)
= −∇P + J×B+∇·Π+ Fu,

∂tB =∇×
(
u×B− η J

)
+ F

B
,

(7)

with ρ, u and P indicating the plasma density, velocity
and pressure. B is the magnetic field, J=∇×B, η is the
magnetic diffusivity. Π=ρ ν

[
∇u +∇uT −

(
2/3

)(
∇·u

)
I
]

is the viscous stress tensor, with ν being the viscosity,
I is the identity matrix, and T indicates the transpose
operation. Fu and F

B
are large scale turbulent forcing

terms.
By applying the low-pass filter in Eq. 6 to Eqs. 7, we

obtain

∂tρ+∇·
(
ρ û

)
= 0,

∂t
(
ρ û

)
+∇·

(
ρ ûu

)
= −∇P + J×B+∇·Π+ Fu,

∂tB =∇×
(
u×B

)
− η∇×J+ F

B
.

(8)

The strategy now is expressing Eqs. 8 in terms of the
low-pass filtered quantities ρ, û and B, plus some sub-
scale terms. While the continuity equation is already in
the correct form, the momentum and induction equations
need some simple algebraic manipulation. To this end,
we introduce

ûu = ûû+
(
ûu− ûû

)
= ûû+ τu,

J×B = J×B+
(
J×B− J×B

)
= J×B+ τ

B
,

u×B = û×B+
(
u×B− û×B

)
= û×B− τ

E
,

(9)

where τu, τ
B

and τ
E

are the subscale stress tensor,
Lorentz force, and electric field. The momentum equa-
tion thus becomes

∂t
(
ρ û

)
+∇·

(
ρ ûû

)
= −∇P + J×B+

−∇·
(
ρ τu

)
+ τ

B
+∇·Π+ Fu,

(10)

while the induction equation becomes

∂tB =∇×
(
û×B

)
−∇×τ

E
− η∇×J+ F

B
. (11)

Equations for the low-pass filtered kinetic and magnetic
energies are obtained by taking the dot product of Eq. 10
with û, and of Eq. 11 with B, which gives

∂t

(
1

2
ρû2

)
+∇·

(
1

2
ρû2û

)
= −∇P ·û+

−
(
û×B

)
·J−

[
∇·

(
ρ τu

)]
·û+ τ

B
·û+

+
(
∇·Π

)
·û+ Fu ·û,

∂t

(
1

2
B

2
)
−∇·

[(
û×B

)
×B

]
=

(
û×B

)
·J+

−
(
∇× τ

E

)
·B− η

(
∇×J

)
·B+ F

B
·B.

(12)

The global energy balance is finally obtained by averaging
Eqs. 12 over the system size, which gives

∂t

〈
1

2
ρ û2

〉
+ Ju = −W

P
−Πu +We.m.+

−Du + Iu,

∂t

〈
1

2
B

2
〉
+ J

B
= −Π

B
−We.m. −D

B
+ I

B
,

(13)

where ⟨·⟩ indicates the spatial average, and energy trans-
fer channels are

Ju=

〈
∇·

(
1

2
ρû2û

)〉
, W

P
=
〈
∇P ·û

〉
,

Πu=
〈[
∇·

(
ρ τu

)]
·û− τ

B
· û

〉
,

Iu=
〈
Fu · û

〉
, Du=

〈
−
(
∇·Π

)
·û
〉
,

J
B
=

〈
−∇·

[(
û×B

)
×B

]〉
,

We.m.=
〈
−
(
û×B

)
·J
〉
, Π

B
=
〈(
∇× τ

E

)
·B

〉
,

I
B
=
〈
F

B
·B

〉
, D

B
=
〈
η
(
∇× J

)
·B

〉
.

(14)

If we assume no energy transport across the system
boundaries, or if the system is periodic, the kinetic and
magnetic energy fluxes Ju and J

B
vanish, while other
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FIG. 4. (k∥, τ) and (k⊥, τ) projections of IB (a)-(b), Iu (c)-(d), DB (e)-(f), and Du (g)-(h). Vertical green dashed lines indicate

parallel and perpendicular integral scales kint
∥ and kint

⊥ , while horizontal green dashed lines represent the nonlinear time τnl.

terms can be rewritten as

W
P
=
〈
−P ∇·û

〉
, Du=

〈
Π :∇û

〉
,

Πu=
〈
−ρ τu :∇û− τ

B
· û

〉
,

Π
B
=
〈
τ

E
· J

〉
, D

B
=
〈
η J

2〉
.

(15)

Magnetic and kinetic injection and dissipation rates

In this section, we show the energy injection rate and
the energy dissipation rate decomposed into their mag-
netic and kinetic components, for the (β = 0.5, σ

C
≃ 0)

simulation analyzed in the Letter.
The first row of Fig. 4 shows the magnetic energy in-

jection rate I
B
, panels (a)-(b), and the kinetic energy

injection rate Iu, panels (c)-(d). Both terms exhibit a
similar (k⊥, k∥, τ) dependence, with comparable ampli-
tudes. In particular, both I

B
and Iu are positive and

increase with wavenumber, up to k∥ ≃ 1.3 and k⊥ ≃ 6,
after which they saturates as there is no contribution
stemming from larger wavenumbers. I

B
and Iu increase

from τ ≃ 15 to τ ≃ 1.5, being almost constant elsewhere.
The fact that I

B
and Iu have analogous features, includ-

ing a broadband frequency response, is a consequence of
the design of our turbulent drivers F

B
and Fu, both of

them injecting magnetic and velocity fluctuations in the

same range of wavenumbers and frequencies, with similar
amplitudes.

The energy dissipation rate components are shown in
the second row of Fig. 4, where D

B
is the magnetic en-

ergy dissipation rate, panels (e)-(f), and Du is the kinetic
energy dissipation rate, panels (g)-(h). Both D

B
and

Du are weak at large scales, and quickly increase toward
large wavenumbers and small τ . This behavior implies
that dissipation affects mainly large wavenumbers and
high frequencies, while low ω fluctuations are not dissi-
pated. The similarities observed for D

B
and Du are a

consequence of the fact that we have chosen both the
viscosity ν and magnetic diffusivity η to have the same
value.

Imbalanced turbulence run and high-β run

In this section, we show results from our spatio-
temporal coarse graining (CG) analysis applied to other
two 3D magnetohydrodynamic (MHD) simulations of
turbulence, realized using the code Athena++. Both sim-
ulations are initialized with exactly the same parameters
as the simulation analyzed in the Letter, but we vary the
cross helicity and plasma β. Cross helicity σ

C
is defined
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FIG. 5. (k∥, ω) and (k⊥, ω) projections of magnetic field, velocity and density spectra PB , Pu and Pρ for the imbalanced
turbulence run (a)-(f), and for the high-β turbulence run (g)-(l). Dashed lines indicate the the dispersion relations of Aflvén
wave (AW) and slow modes (SM) for parallel propagation (k⊥ = 0), and of fast modes (FM) for perpendicular propagation
(k∥=0).

as

σ
C
=

2
√
ρu · δB

ρu2 + δB2
, (16)

where δB=B−B0 (withB0=B0 ẑ being the guide field).
The first simulation (run A) has (β = 0.5, σ

C
≃ 0.73),

representing near-Sun solar wind turbulence, where σ
C

reaches large values [78]. The second simulation (run B)
has (β=18, σ

C
≃ 0), typical of solar wind turbulence in

the outer heliosphere [77]. Due to the different σ
C

and
β, both simulations reach a fully developed state where
magnetic, velocity and density fluctuations exhibit root
mean square (rms) amplitudes slightly different from the
simulation analyzed in the Letter. Specifically, run A has
δBrms/B0 ≃ 0.17 and δurms/cA ≃ 0.17 (with c

A
being

the Alfvén speed), while run B has δBrms/B0 ≃ 0.15
and δurms/cA ≃0.14. Density fluctuations reach an rms
amplitude of δρrms/ρ0 ≃ 0.06 (with ρ0 being the initial
density) in run A, while run B has δρrms/ρ0≃0.003, due
to high β suppressing compressible fluctuations [74].

Figure 5 shows (k∥, ω) and (k⊥, ω) projections of mag-
netic field, velocity and density spectra P

B
, Pu and Pρ,

for run A, panels (a)-(f), and for run B, panels (g)-(l),
with dashed lines indicating dispersion relations of Alfvén
waves (AW), slow modes (SM), and fast modes (FM). We
see that in both runs, most of magnetic and kinetic en-
ergy is concentrated at low ω and small k∥, with a wider
distribution in k⊥, and only a negligible fraction of en-
ergy associated with waves. This is analogous to what we
observe in the (β = 0.5, σ

C
≃ 0) simulation analyzed in

the Letter. Density spectra exhibit a similar distribution
as P

B
and Pu in (k∥, k⊥, ω) space, with Pρ being about

three orders of magnitude smaller in run B with respect

to run A, consistently with the lower level of compress-
ibility expected for high β turbulence. A regular wavy
pattern is observed in the (k∥, ω) projection of Pρ, at
small k∥ and toward high ω, in run B. This pattern is
caused by the finite energy contained in FMs, producing
those features in (k∥, ω) space when averaged over k⊥. A
peculiar property of run A is that all spectra are skewed
toward positive ω in (k∥, ω) space. This happens because
high σ

C
implies that modes propagating in the direction

parallel to the guide field B0 have less energy than modes
propagating antiparallel to B0 [75].

Figure 6 shows (k∥, τ) and (k⊥, τ) projections of the
magnetic energy cascade rate Π

B
, electromagnetic (e.m.)

work We.m., and kinetic energy cascade rate Πu, for run
A, panels (a)-(f), and for run B, panels (g)-(l), with black
lines indicating their isocontours. As a reference, we show
the parallel and perpendicular integral scales kint∥ and

kint⊥ (horizontal green dashed lines), together with the
nonlinear time τnl (vertical green dashed lines), as de-
fined in the Letter. Since runs A and B are driven with
the same method as the simulation analyzed in the Let-
ter, with the same viscosity ν and magnetic diffusivity
η, energy injection rates I

B
and Iu, and energy dissipa-

tion rates D
B

and Du, exhibit the same properties as
those of the (β = 0.5, σ

C
≃ 0) run, so we do not show

them here, to avoid redundancy. The pressure work W
P
,

quantifying compressible effects, is negligibly small with
respect to the other energy transfer channels (ETCs) in
both simulations (especially in run B). Hence, we do not
show W

P
for runs A and B here, since its contribution

to the global energy balance is irrelevant. Here, we fo-
cus on analyzing Π

B
, We.m. and Πu, as their interplay
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FIG. 6. (k∥, τ) and (k⊥, τ) projections of ΠB , We.m. and Πu for the imbalanced turbulence run (a)-(f), and for the high-β

turbulence run (g)-(l). Vertical green dashed lines indicate parallel and perpendicular integral scales kint
∥ and kint

⊥ , while
horizontal green dashed lines represent the nonlinear time τnl.

is responsible for the origin of low ω fluctuations and for
their contribution to the turbulent cascade. Figures 6(a)-
(b) show that Π

B
of run A has a bifurcation in τ space,

being negative (inverse cascade) for τ ≳ τnl, and posi-
tive (direct cascade) for τ < τnl, where it peaks around
integral scales. The same kind of behavior is observed
for Π

B
of run B, Fig. 6(g)-(h). Thus, consistently with

the (β=0.5, σ
C
≃0) run analyzed in the Letter, we find

that the inverse magnetic energy cascade responsible for
the formation of low ω (large τ) magnetic fluctuations
takes place in both imbalanced and high β turbulence.
In both simulations, magnetic energy flowing to large τ
is converted into low ω kinetic energy by We.m., which
is positive for τ ≳ τnl, as seen in Fig. 6(c)-(d) for run A,
and in Fig. 6(i)-(j) for run B. Finally, in both runs, low
ω kinetic energy cascades to small spatial and temporal
scales, as highlighted by Πu, which is positive at all (k, τ)
scales, with a stronger cascade rate around kint∥ , kint⊥ and

τnl, as shown in Fig. 6(e)-(f) for run A, and in Fig. 6(k)-
(l) for run B. Part of the kinetic energy transferred to
small scales is then converted into magnetic energy by
We.m., being negative for τ <τnl.

To summarize, we find that magnetic, velocity and
density fluctuations in both imbalanced and high β tur-
bulence mainly reside in low ω modes, with wavenumbers
almost perpendicular to the guide field. The ETCs anal-
ysis reveals that low ω magnetic modes are produced by
an inverse magnetic energy cascade affecting fluctuations
with time scales τ ≳ τnl. Low ω magnetic modes trans-
fer part of their energy to low ω velocity fluctuations,
explaining the abundance of kinetic energy at low ω in
energy spectra. Low ω velocity fluctuations ultimately
undergo a direct cascade toward higher wavenumbers

and frequencies, meaning that low ω modes actually con-
tribute to driving the turbulent cascade. This dynamics
is consistent with what we find for the (β=0.5, σ

C
≃ 0)

simulation.
Our analysis shows that the inverse low frequency mag-

netic field energy cascade, which is the main finding un-
covered by our spatio-temporal CG method, appears to
be a robust feature of plasma turbulence, observed in
both balanced and imbalanced turbulence, and for both
low and high β. We finally note that in both run A
and run B, We.m. at large τ is weaker in amplitude than
We.m. of the simulation analyzed in the Letter, especially
in the imbalanced case. In run A, this may be caused by
the fact that, due to the MHD conservation of σ

C
, im-

balanced turbulence tends toward an equilibrium state
where u is parallel to B, an effect known as “dynamic
alignment”. Consequently, since the e.m. work is propor-
tional to u×B, dynamic alignment may weaken We.m.,
especially at low ω as these are associated with long-lived,
near-equilibrium structures. In the case of run B, the
large β implies that the kinetic pressure is much larger
than the magnetic pressure. As a consequence, pressure
forces may dominate over e.m. forces, especially in low
frequency, near-equilibrium structures, possibly explain-
ing why We.m. is weaker at large τ in the large β case.
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P. Arévalo, A. Fabian, W. Forman, J. Sanders,
A. Simionescu, R. Sunyaev, et al., Nature 515, 85 (2014).

[5] J. V. Shebalin, W. H. Matthaeus, and D. Montgomery,
Journal of plasma physics 29, 525 (1983).

[6] P. Goldreich and S. Sridhar, Astrophysical Journal, Part
1 (ISSN 0004-637X), vol. 438, no. 2, p. 763-775 438, 763
(1995).

[7] J. Cho and E. T. Vishniac, The Astrophysical Journal
539, 273 (2000).

[8] T. S. Horbury, M. Forman, and S. Oughton, Physical
Review Letters 101, 175005 (2008).

[9] R. Wicks, T. Horbury, C. Chen, and A. Schekochihin,
Monthly Notices of the Royal Astronomical Society: Let-
ters 407, L31 (2010).
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